
www.manaraa.com

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459,ISO 9001:2008 Certified Journal, Volume 3, Issue 8, August 2013)

604

Handling Clock synchronization Anomalies in Distributed

System

Shripad Biradar
1
, Santosh Durugkar

2
, Subhash Patil

3
1RMD Sinhgad School Of Engineering (RMDSSOE) Warje

2,3Late G.N.Sapkal College ofEngineering, Nasik, University of Pune

Abstract:

Distributed system:

A distributed system is software systems in which

components located on networked computers communicate

and coordinate their actions by passing messages.
[1]

 The

components interact with each other in order to achieve a

common goal.
In this paper we have suggested a solution which will

overcome the time required to process the request which are

remain in waiting queue.
Instead of sending and Receiving Request and Response

messages to each and every process, all the processes that are

involved into the association directly send a request message

to a critical section.
It will reduce the time required to broadcast the message to

each other. Instead of this at critical section side we can

prepare the waiting queue which will hold all the requesting

processes and will allow them one by one .

Keywords: distributed system , clock synchronization,

ricarta and agrawal’s algorithm, process, logical clock ,

virtual clock.

I. INTRODUCTION

1.1 Introduction
There are many alternatives for the message passing

mechanism, including RPC-like connectors and message

queues. Three significant characteristics of distributed

systems are: concurrency of components, lack of a global

clock, and independent failure of components.

An important goal and challenge of distributed systems

is location transparency. Examples of distributed systems
vary from SOA-based systems to massively multiplayer

online games to peer-to-peer applications.

Fig. 1.1 Distributed system structure

1.2 Clock synchronization

It is a problem from computer science and engineering

which deals with the idea that internal clocks of several

computers may differ. Even when initiallyset accurately,

real clocks will differ after some amount of time due to

clock drift, caused by clocks counting time at slightly

different rates.

There are several problems that occur as a repercussion
of clock rate differences and several solutions, some being

more appropriate than others in certain contexts.

Fig 1.2 Synchronization of clocks

www.manaraa.com

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459,ISO 9001:2008 Certified Journal, Volume 3, Issue 8, August 2013)

605

Clock synchronization deals with understanding the

temporal ordering of events produced by concurrent

processes. It is useful for synchronizing senders and

receivers of messages, controlling joint activity, and the

serializing concurrent access to shared objects. The goal is

that multiple unrelated processes running on different

machines should be in agreement with and be able to make

consistent decisions about the ordering of events in a

system.

Clock synchronization is one of the most basic building

blocks for many applications in a Distributed system.

Synchronized clocks are interestingly important because
they can be used to improve performance of a distributed

system. The purpose of clock synchronization is to provide

the constituent parts of a distributed system with a common

notion of time. There are several algorithms for

maintaining clock synchrony in a distributed

multiprocessor system where each processor has its own

clock. In this paper we consider the problem of clock

synchronization with bounded clock drift. We propose a

clock synchronization algorithm which does a two level

synchronization to synchronize the local clocks of the

nodes and also it exhibits fault tolerant behavior. Our
approach should be for combining external clock

synchronization and internal clock synchronization.

1.3 Cristian's algorithm

Cristian's algorithm relies on the existence of a time

server. The time server maintains its clock by using a radio

clock or other accurate time source, then all other

computers in the system stay synchronized with it. A time

client will maintain its clock by making a procedure call to

the time server. Variations of this algorithm make more
precise time calculations by factoring in network radio

propagation time.

1.4 Berkeley algorithm

A mutual network synchronizationprotocol and

algorithm that allows for use-selectable policy control in

the design of the time synchronization and evidence model.

NTP supports single inline and meshed operating models in
which a clearly defined master source of time is used ones

in which no penultimate master or reference clocks are

needed.

In NTP service topologies based on peering, all clocks

equally participate in the synchronization of the network by

exchanging their timestamps using regular beacon packets.

In addition NTP supports a unicast type time transfer

which provides a higher level of security.

A logical clock is a mechanism for capturing

chronological and causal relationships in a distributed

system.

We can construct a logical clock algorithm that will

assign logical times to all the events in the system in a way

that is consistent with the happens before relation, as

follows.
 Each process keeps an integer, initially 0, that

represents its internal logical clock.

 Whenever a process takes a local step, it increments its

logical time by 1, and the incremented time is

considered to be the time of the local event.

 Whenever a process sends a message (send event), it

increments its logical time by 1, and sends that new

time with the message. This time is considered to be

the logical time of the send event

 Whenever a process receives a message (receive
event), it first compares its own logical clock time to

the logical time sent with the message, and sets its own

logical clock to be the maximum of the two times.

Then, it increments its logical time by 1, and the

incremented time is considered to be the time of the
receive event.

II. LAMPORT TIMESTAMPS

2.1 Introduction to Lamport timestamps

The algorithm of Lamporttimestamps is a simple

algorithm used todetermine the order of events in a

distributed computer system.

Fig 2.1 Time Stamp

www.manaraa.com

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459,ISO 9001:2008 Certified Journal, Volume 3, Issue 8, August 2013)

606

As different nodes or processes will typically not be

perfectly synchronized, this algorithm is used to provide a

partial ordering of events with minimal overhead, and

conceptually provide a starting point for the more advanced

vector clock method.

Distributed algorithms such as resource synchronization

often depend on some method of ordering events to

function. For example, consider a system with two

processes and a disk.

The processes send messages to each other, and also

send messages to the disk requesting access. The disk

grants access in the order the messages were sent. Now,
imagine process 1 sends a message to the disk asking for

access to write, and then sends a message to process 2

asking it to read. Process 2 receives the message, and as a

result sends its own message to the disk.

Fig 2.2 lamport’s Timestamp

2.2 Ricart-Agrawala Algorithm

The Ricart-Agrawala Algorithm is an algorithm for

mutual exclusion on a distributed system. This algorithm is

an extension and optimization of Lamport's Distributed

Mutual Exclusion Algorithm, by removing the need for

messages. It was developed by Glenn Ricart

and Ashok Agrawala.

Algorithm

Requesting Site:

Sends a message to all sites. This message includes the

site's name, and the current timestamp of the system

according to its logical clock (which is assumed to

besynchronized with the other sites)

Receiving Site:

• Upon reception of a request message, immediately

send a time stampedreply message if and only if:

• the receiving process is not currentlyinterested

 in the critical section OR
• the receiving process has a lowerpriority

(usually this means having a later timestamp)

• Otherwise, the receiving process will defer the reply

message. This means that a reply will be sent only

after the receiving process has finished using the
critical section itself.

Critical Section:

o Requesting site enters its critical section only after

receiving all reply messages.
o Upon exiting the critical section, the site sends all

deferred reply Messages.

A critical section is a piece of code that only one thread

can execute at a time. If multiple threads try to enter a

critical section, only one can run and the others willsleep.

Fig 2.3 Critical section

Once the thread in the critical section exits, another

thread is woken up and allowed to enter the critical section.

Fig. 2.4 A Process is in Critical Section

www.manaraa.com

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459,ISO 9001:2008 Certified Journal, Volume 3, Issue 8, August 2013)

607

2.3 Critical point about Ricart –Agarwal algorithm:

This is not applicable in case where there are „n‟ no.of

processes. Because failed process cannot “reply” to request

message which can be interpreted as “denial of

permission”.

And may cause all requesting processes to wait
indefinitely.

III. PROPOSED SYSTEM FOR HANDLINGTHESE ANOMALIES

BY APPLYINGFOLLOWING SOLUTIONS

3.1 Solution 1:

We can propose a system in which we can keep track of

“failed” processes.

Instead of delay we can maintain a list of “Live”

processes.

Fig 3.1 List of Failed Processes

Meaning is that a queue can be maintained of those

processes.

We can avoid the delay in such case. so that live

processes will reply to requesting process so that it can get

into the critical section.

3.2 Solution 2:

Instead of sending and Receiving Request and Response

messages to each and every process, all the processes that

are involved into the association directly send a request

message to a critical section.

The critical section is to maintain a table that contains

the entry of each process along with its time stamp , when

new process wants to enter a critical section then its

timestamp is compared with existing timestamp and based

on that it will assigns a priority.

After exiting from a critical section the process need not

to inform all otherprocess that are involved into

theassociation, instead of that the processsimply exits
from critical section and remaining thing is going to be take

care by critical section.

The above solution will not consume much time

compared to agarwala‟s algorithm but the drawback is that

critical section has to maintain separate algorithm to assign

priority and some CPU memory to store these information.

The Algorithm is as follows

 If(Timestamp of new Process >= list of

existing Time stamps)
 {

 Enter into the critical section “Process
Id”

 }
 Else

 {

 Wait for the duration as per the new

Priority
 }

In the Above Algorithm the Time Stamp value is
not only critical section requesting time but it may also
the execution time of process in critical section.

IV. CONCLUSION

Hence after observing the time required to reply to the

message from each of the processes will be greater and also

it creates the complexity if the process is failed one. It will

be assumed that “denied‟ reply that process is giving even

though it is failed.

So instead of this we can go for implementing the queue

for maintaining the failed processes list.

So in implementation at the time of accessing permission

from every process wecan go to only those processes which

are not in the “failed processes list” i.e. the queue
maintained for the same.

REFERENCES

[1] Paul Krzyzanowski, “Clock Synchronization”

[2] “Distributed Operating Systems”, By Andrew Tanenbaum, © 1995

Prentice Hall.

[3] “Modern Operating Systems", By Andrew Tanenbaum, ©1992

Prentice Hall.

[4] Time, Clocks, and the Ordering of Events in a Distributed System,

Leslie Lamport, Communications of the ACM, July 1978, Volume

21, Number 7, pp. 558-565.

